Climatological Coastal Jet Collision, Intermediate Water Formation, and the General Circulation of the Red Sea*
نویسندگان
چکیده
The authors present climatologies of a numerical model of the Red Sea, focusing on the dynamics of winter intermediate water formation. Northward flowing boundary currents are identified as the major dynamical elements. At the northern boundary, the eastern current follows the geometry, eventually turning back to the south. At ;268N and the western wall the two boundary currents collide. At the collision site, the denser eastern current subducts under the western boundary current. The subduction forces the western boundary current eastward into the interior. Convection communicates the surface fluxes to the downwelled plume and intermediate water forms. The estimated rate, 0.11 Sv (Sv [ 106 m3 s21), agrees with previous estimates. The authors identify basin-scale sea-surface tilt to the north due to variable thermohaline forcings as the key dynamical variable. The resultant geostrophic eastward cross-channel flow interacts with the boundaries and creates upwelling and surface topography spatial patterns that drive the coastal jets. Upwelling-induced vortex stretching dominates the vorticity balance and governs the separation of the western boundary current from the western wall. The process ceases in the summer.
منابع مشابه
The Adriatic Sea modelling system: a nested approach
A modelling system for the Adriatic Sea has been built within the framework of the Mediterranean Forecasting System Pilot Project. The modelling system consists of a hierarchy of three numerical models (whole Mediterranean Sea, whole Adriatic Sea, Northern Adriatic Basin) coupled among each other by simple one-way, off-line nesting techniques, to downscale the larger scale flow field to highly ...
متن کامل3D Modeling of Wind-Driven Circulation In The Northern Indian Ocean During Monsoon
Abstract The purpose of this research is to design and identify some of the natures and characteristics of high-resolution surface currents in the Northern Indian Ocean. The pattern of 3D circulation of the Wind-driven surface currents, Sea surface temperature (SST) and Sea Surface Salinity (SSS) distribution in the Northern Indian Ocean using The MIT general circulation model (MITgcm) with ho...
متن کاملCoralline red algae from the Lower Pliocene Shagra Formation of Wadi Wizer, Red Sea coast, Egypt: Biofacies analysis, systematics and palaeoenvironmental implications
Coralline red algae are highly abunadant and well diversified in the well exposed carbonate deposits of the Lower Pliocene Shagra Formation at Wadi Wizer, Red Sea coast, Egypt. Lithostratigraphically, the Shagra Formation unconformably overlies the Late Miocene Marsa Alam Formation and underlies the Quaternary deposits. This carbonate facies is dominated by different assemblage of coralline red...
متن کاملModeling the impact of atmospheric and terrestrial inputs on the Black Sea coastal dynamics
The dynamics on the North Western Shelf area of the Black Sea are examined, with an emphasis on the circulation induced by buoyancy due to the land drained fresh waters and by the interaction with the atmosphere, notably wind stress. A three-dimensional, multi-layer hydrodynamic model is employed with realistic topography and parameterisation of river plume physics. We focus on the seasonal pat...
متن کاملEastern North Pacific Subtropical Mode Water in a general circulation model: Formation mechanism and salinity effects
The Eastern North Pacific Subtropical Mode Water (ESTMW) is a water mass of low potential vorticity (PV) and appears as a weak pycnostad or thermostad. Distinct from other subtropical mode waters, it forms in the absence of a deep winter mixed layer. The formation mechanism of this ESTMW is investigated using an ocean general circulation model that is forced by monthly climatological temperatur...
متن کامل